Worked examples #
In all cases below we will work with the demo data included with models-for-missing-data, which has the following directory structure:
.
└── assets
└── _config/
└── M4MD/
├── ELDO/
│ ├── _park-level-attributes.yml
│ ├── counts.yml
│ └── hits-vs-trials.yml
└── _network-level-attributes.yml
A minimal example for count data #
The following example comes from “assets/_config/M4MD/ELDO/counts.yml”.
The analysis config file #
# ==== DATA ===================================================================
response info:
file: assets/_data/count-data.csv
state variable:
response column:
- y_sim
description:
- Simulated count data
sampling method: plot
sample id column(s):
- plot
site location info:
file: assets/_data/sample-locs.csv
coordinate columns:
- x_coord
- y_coord
covariate info:
file: assets/_data/sample-covariates.csv
# event date info: # TODO: describe. Only use when covariates are time-varying!
# date-time column: event_year
# date-time format: Y!
# ==== MODEL ==================================================================
# Likelihood. For counts, one or both of: poisson, negative-binomial.
likelihood:
- poisson
- negative-binomial
# Deterministic model for the mean. For counts, one of: exponential, linear,
# or monomolecular.
deterministic model:
# - linear
- exponential
# - monomolecular
# Group-level effects structure. One of: b0, b0-b1.
group-level effects:
- b0
# - b0-b1
# Variance structure (these *have* to be colnames, not descriptions).
variances:
stratum-level fixed:
level: stratum
type: fixed
response column(s):
- y_sim
# site-level hierarchical:
# level: site
# type: hier
# response column(s):
# - y_sim
# Covariates.
additional covariates:
- w1
# Initial values (one of: 'auto', 'default', or 'inherited')
initial values: default
The model call #
You can run this model interactively from RStudio using “model-api/analysis-pipeline.R”, or at the command line with:
./model-api/analysis-pipeline.R \
assets/_config/M4MD/ELDO/counts.yml \
--n-adapt 5000 --n-update 10000 --n-iter 8000 \
--n-cores 2 \
--excl-null
Note that we exclude the “null” (time-only) model with the flag --excl-null
.
Selected outputs #
Convergence diagnostics #
Potential scale reduction factors:
Point est. Upper C.I.
B1[1] 1.00 1.01
B1[2] 1.00 1.00
Beta 1.00 1.01
deviance 1.00 1.00
mu.B0[1] 1.00 1.00
mu.B0[2] 1.00 1.00
p.mean 1.00 1.00
p.sd 1.00 1.00
sigma.B0[1] 1.00 1.01
sigma.B0[2] 1.01 1.01
#
Model checking and evaluation #
Posterior predictive checks | Observed vs. predicted plots |
---|---|
Inference #
Intercept and time slope terms | Fixed effects |
---|---|
A minimal example for binomial data #
The following example comes from “assets/_config/M4MD/ELDO/hits-vs-trials.yml”.
The analysis config file #
# ==== DATA ===================================================================
response info:
file: assets/_data/binomial-data.csv
state variable:
hits column:
- y_sim
description:
- Simulated binomial data
trials column:
- trials
sampling method: transect
sample id column(s):
- transect
site location info:
file: assets/_data/sample-locs.csv
coordinate columns:
- x_coord
- y_coord
covariate info:
file: assets/_data/sample-covariates.csv
# event date info: # TODO: describe. Only use when covariates are time-varying!
# date-time column: event_year
# date-time format: Y!
# ==== MODEL ==================================================================
# Likelihood. For counts, one or both of: poisson, negative-binomial.
likelihood:
- binomial
- beta-binomial
# - zero-inflated-binomial
# - zero-inflated-beta-binomial
# Deterministic model for the mean. For counts, one of: exponential, linear,
# or monomolecular.
deterministic model:
- inverse-logit
# Group-level effects structure. One of: b0, b0-b1.
group-level effects:
- b0
# - b0-b1
# Variance structure (these *have* to be colnames, not descriptions).
variances:
stratum-level fixed:
level: stratum
type: fixed
response column(s):
- y_sim
# site-level hierarchical:
# level: site
# type: hier
# response column(s):
# - y_sim
# Covariates.
additional covariates:
- w1
# Initial values (one of: 'auto', 'default', or 'inherited')
initial values: default